Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot
نویسندگان
چکیده
South-western Australia harbours a global biodiversity hotspot on the world's most phosphorus (P)-impoverished soils. The greatest biodiversity occurs on the most severely nutrient-impoverished soils, where non-mycorrhizal species are a prominent component of the flora. Mycorrhizal species dominate where soils contain slightly more phosphorus. In addition to habitat loss and dryland salinity, a major threat to plant biodiversity in this region is eutrophication due to enrichment with P. Many plant species in the south-western Australian biodiversity hotspot are extremely sensitive to P, due to a low capability to down-regulate their phosphate-uptake capacity. Species from the most P-impoverished soils are also very poor competitors at higher P availability, giving way to more competitive species when soil P concentrations are increased. Sources of increased soil P concentrations include increased fire frequency, run-off from agricultural land, and urban activities. Another P source is the P-fertilizing effect of spraying natural environments on a landscape scale with phosphite to reduce the impacts of the introduced plant pathogen Phytophthora cinnamomi, which itself is a serious threat to biodiversity. We argue that alternatives to phosphite for P. cinnamomi management are needed urgently, and propose a strategy to work towards such alternatives, based on a sound understanding of the physiological and molecular mechanisms of the action of phosphite in plants that are susceptible to P. cinnamomi. The threats we describe for the south-western Australian biodiversity hotspot are likely to be very similar for other P-impoverished environments, including the fynbos in South Africa and the cerrado in Brazil.
منابع مشابه
Diversity of Plants and Animals in Mountain Ecosystems in Tajikistan
Tajikistan is a hotspot of plant and animal species diversity and endemism andis important for the conservation of biodiversity on a global scale. The country is located ata biological crossroads. Species from Central and Northern Europe, Central Asia, theMiddle East, and North Africa mingle here with endemics found nowhere else. Therichness of Tajikistan‘s biodiversity shows up at the genetic,...
متن کاملCoverage of Native Plants Is Key Factor Influencing the Invasibility of Freshwater Ecosystems by Exotic Plants in China
Understanding the biotic and abiotic factors that influence the susceptibility of a community to invasion is beneficial for the prediction and management of invasive species and the conservation of native biodiversity. However, the relationships between factors and invasibility of a community have not been fully confirmed, and the factors most associated with the susceptibility of a community t...
متن کاملChanges in Soil Organic Carbon, Nitrogen and Phosphorus in Modified and Native Rangeland Communities (Case study: Sisab Rangelands, Bojnord)
Converting the native rangelands to simplified agronomic communities causessome changes in soil carbon, nitrogen and phosphorus. Establishing of perennial plantcommunities on formerly cultivated rangelands is expected to stabilize soil properties andincrease the amount of C, N, P stored in rangeland soils, but there is little information on whatplant communities are the most effective for impro...
متن کاملRoot-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition
Most land plants live in association with arbuscular mycorrhizal (AM) fungi and rely on this symbiosis to scavenge phosphorus (P) from soil. The ability to establish this partnership has been lost in some plant lineages like the Brassicaceae, which raises the question of what alternative nutrition strategies such plants have to grow in P-impoverished soils. To understand the contribution of pla...
متن کاملMore aboveground biomass, phosphorus accumulation and remobilization contributed to high productivity of intercropping wheat
Intercropping often results in increasing production than sole per unit land area, but theunderlying mechanisms are poorly understood. Plants showed different physiologicalcharacteristics in intercropping and sole. However, less information was shown the relationshipsbetween plant aboveground biomass (AB), phosphorus accumulation (PB) and remobilizationand the yield advantage. Here, field exper...
متن کامل